Версия для печати

Номер страницы: 1 ...  124 125 126 127 128 129 130 131 132 133 134 135 136 137 138  139  140 141 142 143 144 145 146 147 148 149 150 151 152 153  ... 216
4340. Даны координаты противоположных вершин квадрата $ABCD$: $A(-1;~-3)$ и $C(3;~5)$. Найти координаты вершин $B$ и $D$.
4341. Даны координаты смежных вершин прямоугольника $ABCD$: $A(-4;~3)$, $B(-2;~-3)$. $O(3;~2)$ — точка пересечения его диагоналей. Найти координаты вершин $C$ и $D$.
4342. Даны координаты противоположных вершин квадрата $ABCD$: $A(-3;~-1)$ и $C(6;~4)$. Найти координаты вершин $B$ и $D$.
4343. Решить уравнение для каждого значения параметра $a$: $|a|x+2a+3=3x$. При каких значениях параметра $a$ уравнение не имеет решений?
4344. Найти все значения параметра $a$, при каждом из которых уравнение $|x-a|=ax$ имеет ровно один корень. Найти соответствующие корни уравнения.
4345. Решить уравнение для каждого значения параметра $a$: $2x=|a|x+2-a$. При каких значениях параметра $a$ уравнение имеет более одного корня?
4346. В корзине лежат шесть белых и три чёрных шарика. Не глядя, без возвращения, из корзины один за другим достают три шарика. Случайная величина $\xi$ — количество черных шариков в такой выборке. Составить ряд распределения величины $\xi$, найти её математическое ожидание.
4347. Найти математическое ожидание и дисперсию случайной величины, заданной функцией распределения: $F_{\xi}(x)=\left\{\begin{aligned} &0, &\text{если}~x < -1; \\ &0{,}4, &\text{если}~-1 \leqslant x < 1; \\ &0{,}6, &\text{если}~1 \leqslant x < 3; \\ &1, &\text{если}~x \geqslant 3. \end{aligned}\right.$
4348. Вычислить: $\displaystyle \sin 690^{\circ} \text{tg}\,480^{\circ}$.
4349. Вычислить: $\displaystyle \cos 510^{\circ}\, \text{tg}\,315^{\circ}$.
4350. Вычислить: $\displaystyle \cos \frac{7\pi}{3} \sin\left(-\frac{13\pi}{4}\right)$.
4351. Найти $\cos\alpha$ и $\text{tg}\,\alpha$, если $\displaystyle \sin\alpha=\frac{7}{25}$ и $\displaystyle \frac{\pi}{2} < \alpha < \pi$.
4352. Найти $\sin\alpha$ и $\cos\alpha$, если $\displaystyle \text{tg}\,\alpha=-\frac{20}{21}$ и $\displaystyle \frac{3\pi}{2} < \alpha < 2\pi$.
4353. Упростить выражение: $\displaystyle\frac{1-\sin\alpha}{\cos\alpha}+\frac{\cos\alpha}{1-\sin\alpha}$.
4354. Упростить выражение: $\displaystyle\frac{2\sin^2\alpha-1}{\sin\alpha+\cos\alpha}$ и вычислить его значение при $\displaystyle\alpha=\frac{19\pi}{4}$
4355. Упростить выражение: $\displaystyle\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}+\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$
4356. Найти все значения параметра $a$, при которых ровно один из корней уравнения $x^2-5ax-4x+6a^2+13a-5=0$ принадлежит отрезку $[2;~4]$.
4357. Найти все значения параметра $a$, при которых число 2 находится между корнями уравнения $x^2-ax-3x-2a^2+3a+2=0$.
4358. Найти все значения параметра $a$, при которых корни уравнения $x^2-2ax-2x+2a-4=0$ разных знаков и оба по абсолютной величине меньше 7.
4359. На стороне $BC$ параллелограмма $ABCD$ взята точка $M$ так, что $BM:MC=5:3$, а на стороне $CD$ — точка $K$ так, что $CK:KD=3:2$. Через векторы $\vec a=\overline{AD}$ и $\vec b=\overline{AB}$ выразить векторы:
а) $\overline{MA}$; б) $\overline{MK}$; в) $\overline{CN}$, где $N$ — середина $MK$.
4360. На стороне $BC$ параллелограмма $ABCD$ взята точка $M$ так, что $BM:MC=2:1$, а на стороне $CD$ — точка $K$ так, что $CK:KD=2:3$. Через векторы $\vec a=\overline{AD}$ и $\vec b=\overline{AB}$ выразить векторы:
а) $\overline{MD}$; б) $\overline{KM}$; в) $\overline{BN}$, где $N$ — середина $MK$.
4361. На стороне $BC$ параллелограмма $ABCD$ взята точка $M$ так, что $BM:MC=3:2$, а на стороне $CD$ — точка $K$ так, что $CK:KD=2:1$. Через векторы $\vec a=\overline{AD}$ и $\vec b=\overline{AB}$ выразить векторы:
а) $\overline{MA}$; б) $\overline{MK}$; в) $\overline{CN}$, где $N$ — середина $MK$.
4362. На стороне $BC$ параллелограмма $ABCD$ взята точка $M$ так, что $BM:MC=2:3$, а на стороне $CD$ — точка $K$ так, что $CK:KD=3:1$. Через векторы $\vec a=\overline{AD}$ и $\vec b=\overline{AB}$ выразить векторы:
а) $\overline{MD}$; б) $\overline{KM}$; в) $\overline{BN}$, где $N$ — середина $MK$.
4363. Пусть $\vec e_1$ и $\vec e_2$ — неколлинеарные векторы. Выразить вектор $\vec a=2\vec e_1-3\vec e_2$ через векторы $\vec x=\vec e_1 + \vec e_2$ и $\vec y=\vec e_1 - \vec e_2$.
4364. Пусть $\vec e_1$ и $\vec e_2$ — неколлинеарные векторы. Выразить вектор $\vec a=3\vec e_1-5\vec e_2$ через векторы $\vec x=\vec e_1 + \vec e_2$ и $\vec y=\vec e_1 - \vec e_2$.
4365. Пусть $\vec e_1$ и $\vec e_2$ — неколлинеарные векторы. Выразить вектор $\vec a=2\vec e_1-7\vec e_2$ через векторы $\vec x=\vec e_1 + \vec e_2$ и $\vec y=\vec e_1 - \vec e_2$.
4366. Пусть $\vec e_1$ и $\vec e_2$ — неколлинеарные векторы. Выразить вектор $\vec a=\vec e_1-3\vec e_2$ через векторы $\vec x=\vec e_1 + \vec e_2$ и $\vec y=\vec e_1 - \vec e_2$.
4367. Найти все значения параметра $a$, при каждом из которых один из корней уравнения $x^2-6x-4a^2+8a+5=0$ лежит на отрезке $[4;~6]$.
4368. Найти все значения параметра $a$, при каждом из которых один из корней уравнения $x^2+ax-8x-2a^2-7a+15=0$ лежит на отрезке $[5;~7]$.
4369. Найти все значения параметра $a$, при каждом из которых один из корней уравнения $x^2-ax-3x-2a^2+3a+2=0$ лежит на отрезке $[3;~5]$.
© Моисеев Д. В., 2015-2023 г.
Не допускается использование материалов сайта в печатных изданиях и на других сайтах. Авторскими правами защищены каталог, тексты заданий, решения. При возникновении правовых вопросов и споров свяжитесь, пожалуйста, с администратором сайта (см. раздел «О сайте»).