📁
Арифметическая и геометрическая
Задачи (11)
№729
Четвертый, шестой и восемнадцатый члены арифметической прогрессии, сумма которых равна 86, образуют прогрессию геометрическую. Найти сумму первых двадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№730
Три числа, сумма которых равна $33$, образуют арифметическую прогрессию. Если от первого числа отнять 2, от второго отнять 1, а к третьему прибавить 5, то получившиеся три числа будут образовывать геометрическую прогрессию. Найти исходные три числа.
Арифметическая и геометрическая
Ответ:
Решение:
№731
Четвертый, шестой и четырнадцатый члены арифметической прогрессии, сумма которых равна 42, образуют прогрессию геометрическую. Найти сумму первых двадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№732
Три числа, сумма которых равна $33$, образуют арифметическую прогрессию. Если от первого числа отнять 4, от второго отнять 3, а к третьему прибавить 2, то получившиеся три числа будут образовывать геометрическую прогрессию. Найти исходные три числа.
Арифметическая и геометрическая
Ответ:
Решение:
№733
Пятый, восьмой и семнадцатый члены арифметической прогрессии, сумма которых равна 39, образуют прогрессию геометрическую. Найти сумму первых двадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№734
Три числа, сумма которых равна $27$, образуют арифметическую прогрессию. Если от первого числа отнять 4, от второго отнять 5, а к третьему прибавить 3, то получившиеся три числа будут образовывать геометрическую прогрессию. Найти исходные три числа.
Арифметическая и геометрическая
Ответ:
Решение:
№735
Четвертый, шестой и шестнадцатый члены арифметической прогрессии, сумма которых равна 62, образуют прогрессию геометрическую. Найти сумму первых двадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№736
Три числа, сумма которых равна $30$, образуют арифметическую прогрессию. Если от первого числа отнять 5, от второго отнять 4, а к третьему прибавить 5, то получившиеся три числа будут образовывать геометрическую прогрессию. Найти исходные три числа.
Арифметическая и геометрическая
Ответ:
Решение:
№737
Третий, пятый и одиннадцатый члены арифметической прогрессии, сумма которых равна 39, образуют прогрессию геометрическую. Найти сумму первых двадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№738
Пятый, восьмой и семнадцатый члены арифметической прогрессии, сумма которых равна 117, образуют прогрессию геометрическую. Найти сумму первых пятнадцати членов этой арифметической прогрессии.
Арифметическая и геометрическая
Ответ:
Решение:
№739
Три числа, сумма которых равна $45$, образуют арифметическую прогрессию. Если от первого числа отнять 1, от второго отнять 7, а к третьему прибавить 5, то получившиеся три числа будут образовывать геометрическую прогрессию. Найти исходные три числа.
Арифметическая и геометрическая
Ответ:
Решение: