Координатно-векторный метод

В данном разделе собраны задачи, при решении которых можно (хотя и не обязательно, и даже не всегда целесообразно) ввести прямоугольную систему координат или выбрать какой-либо векторный базис. Решение задач этого раздела следует начинать с осмысления условия и выбора подходящей системы координат, в которой наиболее просто найти координаты нужных точек и векторов, записать уравнения нужных прямых, алгебраически записать заданные в задаче геометрические отношения.

Задачи (25)

№940
На стороне $AB$ угла $BAC=30^{\circ}$ взяты точки $M$ и $N$ на расстоянии $2$ и $6$ от вершины $A$. Найти радиус окружности, проходящей через точки $M$, $N$ и касающейся стороны $AC$.
Координатно-векторный метод
Ответ:
Решение:
№941
Дан квадрат $ABCD$, сторона которого равна $4\sqrt2$. Точка $O$ выбрана в плоскости квадрата так, что $OB=10$, $OD=6$. Найти косинус угла между вектором $OB$ и вектором, направленным из точки $O$ в наиболее удаленную от нее вершину квадрата.
Координатно-векторный метод
Ответ:
Решение:
№943
На катетах $AC=1$ и $BC=4$ прямоугольного треугольника $ABC$ во внешнюю сторону построены квадраты $ACEF$ и $BCGH$. Продолжение медианы $CM$ треугольника $ABC$ пересекает отрезок $EG$ в точке $N$. Найти $CN$.
Координатно-векторный метод
Ответ:
Решение:
№945
Дан ромб $ABCD$ с диагоналями $AC=24$ и $BD=10$. Проведена окружность радиуса $\displaystyle\frac{5\sqrt2}{2}$ с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину $B$, касается этой окружности и пересекает прямую $CD$ в точке $M$. Найдите $CM$.
Координатно-векторный метод
Ответ:
Решение:
№946
В прямоугольнике $ABCD$ сторона $AB$ втрое длиннее стороны $BC$. Внутри прямоугольника лежит точка $N$, причем $AN=\sqrt2$, $BN=4\sqrt2$, $DN=2$. Найти угол $BAN$ и площадь прямоугольника $ABCD$.
Координатно-векторный метод
Ответ:
Решение:
№947
В прямоугольнике $ABCD$ сторона $AD$ вдвое длиннее стороны $AB$. Внутри прямоугольника расположена точка $M$, причем $AM=\sqrt2$, $BM=2$, $CM=6$. Найти угол $ABM$ и площадь прямоугольника $ABCD$.
Координатно-векторный метод
Ответ:
Решение:
№948
В прямоугольном треугольнике $ABC$ длины катетов равны $6$ и $8$. Прямая $AD$ делит сторону $BC$ в отношении $BD:DC=4:5$. Найти угол между прямыми $AB$ и $AD$.
Координатно-векторный метод
Ответ:
Решение:
№949
В равнобедренном треугольнике $ABC$ ($AB=BC=8$) точка $E$ делит боковую сторону $AB$ в отношении $3:1$, считая от вершины $B$. Найти угол между прямыми $CE$ и $CA$, если $AC=12$.
Координатно-векторный метод
Ответ:
Решение:
№950
Точка $K$ — середина стороны $AB$ квадрата $ABCD$, а точка $M$ лежит на диагонали $AC$, причем $AM:MC=3:1$. Докажите, что угол $KMD$ прямой.
Координатно-векторный метод
Ответ:
Решение:
№951
В прямоугольнике $ABCD$ опущен перпендикуляр $BK$ на диагональ $AC$. Точки $M$ и $N$ — середины отрезков $AK$ и $CD$ соответственно. Докажите, что угол $BMN$ прямой.
Координатно-векторный метод
Ответ:
Решение:
№953
Дан треугольник $ABC$. На его сторонах $AB$ и $BC$ построены внешним образом квадраты $ABMN$ и $BCPQ$. Докажите, из середины отрезка $NP$ сторона $AC$ видна под прямым углом.
Координатно-векторный метод
Ответ:
Решение:
№954
Дан четырёхугольник $ABCD$, в котором $AB=AD$ и $\angle ABC=\angle ADC=90^{\circ }$. На сторонах $BC$ и $CD$ выбраны соответственно точки $F$ и $E$ так, что $DF \perp AE$. Докажите, что $AF \perp BE$.
Координатно-векторный метод
Ответ:
Решение:
№955
Пусть $O$ — центр окружности, описанной около равнобедренного треугольника $ABC$ ($AB=AC$), $D$ — середина стороны $AB$, а $E$ — точка пересечения медиан треугольника $ACD$. Докажите, что $OE \perp CD$.
Координатно-векторный метод
Ответ:
Решение:
№960
Треугольник $ABC$ — прямоугольный с катетами $AC=3$ и $BC=4$. Прямая, перпендикулярная биссектрисе угла $ABC$, пересекает продолжение стороны $AC$ треугольника в точке $K$. Прямая, перпендикулярная биссектрисе угла $ACB$, пересекает продолжение стороны $AB$ в точке $M$. Прямая, перпендикулярная биссектрисе угла $BAC$, пересекает продолжение стороны $BC$ в точке $L$. Доказать, что $KL=LM$.
Координатно-векторный метод
Ответ:
Решение:
№961
Прямая проходит через центр квадрата со стороной 1. Найдите сумму квадратов расстояний от всех вершин квадрата до этой прямой.
Координатно-векторный метод
Ответ:
Решение:
№962
В плоскости равностороннего треугольника через его центр проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.
Координатно-векторный метод
Ответ:
Решение:
№971
Дан ромб $ABCD$ с диагоналями $AC=16$ и $BD=8$. Проведена окружность радиуса $\displaystyle\frac{24}{\sqrt{61}}$ с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину $B$ ромба, касается этой окружности и пересекает сторону $CD$ в точке $M$. Найти $CM$.
Координатно-векторный метод
Ответ:
Решение:
№972
Дан ромб $ABCD$ с диагоналями $AC=16$ и $BD=8$. Проведена окружность радиуса $\displaystyle\frac{8}{\sqrt{53}}$ с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину $B$ ромба, касается этой окружности и пересекает сторону $CD$ в точке $M$. Найти $CM$.
Координатно-векторный метод
Ответ:
Решение:
№973
Дан ромб $ABCD$ с диагоналями $AC=16$ и $BD=8$. Проведена окружность радиуса $\displaystyle\frac{8}{\sqrt{13}}$ с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину $B$ ромба, касается этой окружности и пересекает сторону $CD$ в точке $M$. Найти $CM$.
Координатно-векторный метод
Ответ:
Решение:
№974
Дан ромб $ABCD$ с диагоналями $AC=6$ и $BD=12$. Проведена окружность радиуса $\displaystyle\frac{6}{\sqrt{17}}$ с центром в точке пересечения диагоналей ромба. Прямая, проходящая через вершину $B$ ромба, касается этой окружности и пересекает сторону $CD$ в точке $M$. Найти $CM$.
Координатно-векторный метод
Ответ:
Решение: