Задача № 6302
Разное
Условие задачи
На стороне $AB$ выпуклого четырёхугольника $ABCD$ отмечены точки $E$ и $F$, на стороне $BC$ — точки $K$ и $L$, на стороне $CD$ — точки $M$ и $N$, на стороне $AD$ — точки $P$ и $Q$. При этом $AE=EF=FB$, $BK=KL=LC$, $CM=MN=ND$ и $DP=PQ=QA$.<br>
а) Докажите, что отрезки $KQ$ и $LP$ делят отрезок $FM$ на три равных отрезка.<br>
б) Известно, что площадь четырёхугольника $ABCD$ равна 18. Найдите площадь четырёхугольника, вершины которого — точки пересечения прямых $EN$, $FM$, $KQ$ и $LP$.
а) Докажите, что отрезки $KQ$ и $LP$ делят отрезок $FM$ на три равных отрезка.<br>
б) Известно, что площадь четырёхугольника $ABCD$ равна 18. Найдите площадь четырёхугольника, вершины которого — точки пересечения прямых $EN$, $FM$, $KQ$ и $LP$.