Задача № 6342

Разное
Сложность: medium

Условие задачи

Две окружности касаются внутренним образом в точке $A$, причём меньшая окружность проходит через центр большей. Хорда $BC$ большей окружности касается меньшей в точке $P$. Хорды $AB$ и $AC$ пересекают меньшую окружность в точках $K$ и $M$ соответственно.<br>
а) Докажите, что прямые $KM$ и $BC$ параллельны.<br>
б) Пусть $L$ — точка пересечения $KM$ с прямой $AP$. Найдите $AL$, если известно, что $BC=32$, а радиус большей окружности равен 34.