Наибольшее/наименьшее значение
Подразделы
Задачи (124)
№694
Найти наибольшее и наименьшее значения функции $\displaystyle y=\frac{2(2x^2-x-1)}{x^2+2x+2}$ на отрезке $[-1,2]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№695
В полусферу радиуса $a$ опущен стержень длины $3a$. Найти угол наклона стержня в его положении равновесия (середина стержня занимает самое низкое положение).
Текстовые задачи
Ответ:
Решение:
№696
Полная поверхность цилиндрической консервной банки заданного объема $V$ равна $S=2\pi r^2+2V/r$, где $r$ — радиус банки. Найти значение $r$, при котором на изготовление банки пойдет наименьшее количество материала.
Другие задачи
Ответ:
Решение:
№697
Найти наибольшее значение функции $\displaystyle y=e^{-x}(x^2+x-1)$ на отрезке $[0,1]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№698
Тело массой $m_0=3000$ кг падает с высоты $H=500$ м с нулевой начальной скоростью и теряет массу (сгорает) пропорционально времени падения. Коэффициент пропорциональности $k=100$ кг/с. Найти наибольшую кинетическую энергию тела. Массой воздуха пренебречь, ускорение свободного падения считать равным $g=10$ м/с².
Текстовые задачи
Ответ:
Решение:
№699
Дальность полета $x$ шарика, скатившегося по кривому желобу с высоты $H$ до высоты $h$, вычисляется по формуле $x=2\sqrt {h(H-h)}$. При каком $h$ дальность $x$ полета будет наибольшей?
Другие задачи
Ответ:
Решение:
№700
Найти наибольшее значение функции $\displaystyle y=\sqrt [3]{2x^2(3-x)}$ на отрезке $[-1,6]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№701
Цистерна заданного объема $V$ имеет форму (вертикального) цилиндра, завершенного сверху полушаром того же радиуса. При каком радиусе на ее изготовление пойдет наименьшее количество материала?
Текстовые задачи
Ответ:
Решение:
№702
Площадь поперечного сечения специального трубопровода выражается формулой $S=a\sin\alpha(1+\cos\alpha)$, где $a$ — некоторая постоянная, а $\alpha$ — параметр, принимающий значения от $0$ до $\pi/2$. При каком значении $\alpha$ пропускная способность трубопровода будет наибольшей?
Другие задачи
Ответ:
Решение:
№703
Найти наибольшее и наименьшее значения функции $\displaystyle\frac {2(x^2+3)}{x^2-2x+5}$ на отрезке $[-3,3]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№704
Какую длину имеет цилиндрическая балка наибольшего объема, которую можно вырезать из бревна (выдержав соосность), имеющего форму усеченного конуса длины 15 м и радиусами оснований 80 см и 30 см?
Текстовые задачи
Ответ:
Решение:
№705
Если из круглого бревна диаметром $d$ вырезать балку с прямоугольным сечением, основание которого равно $b$, то предельная нагрузка, которую сможет выдержать эта балка (будучи опертой на концах и равномерно нагруженной), равна $P=kb(d^2-b^2)$, где $k$ — постоянная. Найти значение $b$, при котором балка обладает наибольшей прочностью.
Другие задачи
Ответ:
Решение:
№706
Найти наибольшее значение функции $\displaystyle y=\frac{3}{2x+1}-\frac {3}{2x-3}-2$ на отрезке $[0,1]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№707
На какой высоте нужно пробить отверстие в бочке, наполненной водой, чтобы бьющая из него струя имела наибольшую дальность?
Текстовые задачи
Ответ:
Решение:
№963
Найти наибольшее и наименьшее значение функции $f(x)=2x^3-3x^2-12x$ на отрезке $[-2,1]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№964
Найти наибольшее и наименьшее значение функции $f(x)=x^3-3x^2-9x$ на отрезке $[-2,1]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№965
Найти наибольшее и наименьшее значение функции $f(x)=2x^3+9x^2-24x$ на отрезке $[0,2]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№966
Найти наибольшее и наименьшее значение функции $f(x)=x^3-6x^2+9x$ на отрезке $[0,4]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№967
Найти наибольшее и наименьшее значение функции $f(x)=\cos2x+2\sin x-4\cos x-2x$ на отрезке $[0,\pi]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№968
Найти наибольшее и наименьшее значение функции $f(x)=\cos2x-2\sin x-4\cos x+2x$ на отрезке $[-\pi,0]$. Указать, в каких точках достигаются эти значения.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение: