Тригонометрические соотношения в прямоугольном треугольнике

Соотношения между сторонами и углами прямоугольного треугольника.

Задачи (84)

№2627
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=\frac{32}{3}$ и $\displaystyle BH=6$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2628
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=16$ и $\displaystyle BH=9$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2629
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=32$ и $\displaystyle BH=18$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2630
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=\frac{9}{2}$ и $\displaystyle BH=8$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2631
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=\frac{27}{4}$ и $\displaystyle BH=12$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2632
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. Проекции катетов на гипотенузу равны $\displaystyle AH=\frac{18}{5}$ и $\displaystyle BH=\frac{32}{5}$. Найти: а) площадь треугольника $ABC$; б) косинус угла $B$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2633
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=10$, а один из острых углов равен $\alpha=15^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2634
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=10\sqrt3$, а один из острых углов равен $\alpha=30^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2635
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=10$, а один из острых углов равен $\alpha=60^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2636
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=8$, а один из острых углов равен $\alpha=15^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2637
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=12$, а один из острых углов равен $\alpha=75^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2638
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=10$, а один из острых углов равен $\alpha=22^{\circ}\,30'$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2639
Найти а) высоту $h$, проведённую к гипотенузе, и б) площадь $S$ прямоугольного треугольника, если радиус описанной около него окружности равен $R=20\sqrt2$, а один из острых углов равен $\alpha=67^{\circ}\,30'$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2640
В прямоугольнике $ABCD$, сторона $BC$ которого на 2 больше стороны $AB$, а периметр равен 56, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2641
В прямоугольнике $ABCD$, сторона $BC$ которого на 5 больше стороны $AB$, а периметр равен 60, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2642
В прямоугольнике $ABCD$, сторона $BC$ которого на 7 больше стороны $AB$, а периметр равен 92, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2643
В прямоугольнике $ABCD$, сторона $BC$ которого на 7 больше стороны $AB$, а периметр равен 68, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2644
В прямоугольнике $ABCD$, сторона $BC$ которого на 17 больше стороны $AB$, а периметр равен 124, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2645
В прямоугольнике $ABCD$, сторона $BC$ которого на $3\sqrt5$ больше стороны $AB$, а периметр равен $36\sqrt5$, на диагональ $AC$ из вершин $B$ и $D$ опущены перпендикуляры $BM$ и $DK$. Найти $MK$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение:
№2646
В прямоугольном треугольнике $ABC$ из вершины прямого угла $C$ проведены медиана $CM$ и высота $CH$. Найти $HM$, если гипотенуза $AB=12$, $\angle ABC=30^{\circ}$.
Тригонометрические соотношения в прямоугольном треугольнике
Ответ:
Решение: