📁

Производная

Подразделы

Задачи (403)

№632
Каким должно быть сопротивление $r$ электронагревательного прибора, включенного в цепь тока сопротивлением $R$, чтобы в нем выделилось максимальное количество тепла?
Текстовые задачи
Ответ:
Решение:
№633
Объем газов, удаляемых из топки котла в дымовую трубу благодаря тяге, может быть выжен формулой $\displaystyle V=a\sqrt {\frac {T_0}{T}-\left (\frac {T_0}{T}\right )^2},$ где $T$ — средняя температура газов в трубе, $T_0$ — (абсолютная) температура воздуха вне трубы, $a$ — некоторая постоянная. При каком значении $T$ тяга будет наиболее выгодной?
Другие задачи
Ответ:
Решение:
№634
Найти наибольшее и наименьшее значение функции $f(x)=-2x^3-9x^2+24x+12$ на отрезке $[0,2]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№635
Из листа жести, имеющего форму круга радиуса $R$, вырезать такой сектор, из которого получается коническая воронка наибольшего объема.
Текстовые задачи
Ответ:
Решение:
№636
В коническом сосуде, заполненном водой, напряжение $q$, стремящееся разорвать его по кругу, параллельному основанию, выражается формулой $q=b(h-y)(h+2y)$, где $h$ — высота сосуда, $y$ — расстояние до уровня жидкости, $b$ — некоторая постоянная. На какой глубине $y$ это напряжение будет наибольшим?
Другие задачи
Ответ:
Решение:
№637
Найти наименьшее значение функции $y=\displaystyle \frac {3}{2x+3}-\frac {3}{2x-1}+1$ на отрезке $[-1,0]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№638
В точках $A$ и $B$ находятся источники света, один из которых в $8$ раз сильнее другого. Найти отношение, в котором отрезок $AB$ делится наименее освещенной его точкой.
Текстовые задачи
Ответ:
Решение:
№639
Сопротивление $f$ дороги движению автомобиля при скорости $V$ км/ч на плохом шоссе выражается формулой $f=28-0{,}25V+0{,}02V^2$. Определить скорость $V$, при которой сопротивление будет наименьшим.
Другие задачи
Ответ:
Решение:
№640
Найти наименьшее значение функции $y=\sqrt [3]{2(x+1)^2(x-2)}$ на отрезке $[-2,5]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№641
С высоты $H$ над уровнем пола маленький металлический шарик скатывается по гладкому криволинейному желобу. На высоте $h$ желоб обрывается и шарик в дальнейшем совершает свободное падение. В момент отрыва скорость шарика горизонтальна. При каком значении $h$ дальность полета шарика будет наибольшей? Найти дальность полета.
Текстовые задачи
Ответ:
Решение:
№642
Тонкопроводящий кабель состоит из медного провода с изоляцией. Скорость телеграфирования вычисляется как $\displaystyle V=Ax\ln(1/x)$, где $x$ — отношение радиуса медного провода к толщине изоляции. При каком значении $x$ скорость телеграфирования будет наибольшей?
Другие задачи
Ответ:
Решение:
№643
Найти наименьшее значение функции $y=-x^3+3x^2+9x+2$ на отрезке $[0,4]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№644
Окно имеет форму прямоугольника, завершенного сверху полукругом. Периметр окна равен $p$. Какова должна быть ширина окна, чтобы оно пропускало наибольшее количество света?
Текстовые задачи
Ответ:
Решение:
№645
КПД электродвигателя вычисляется по формуле $\displaystyle \eta =\frac{UI-I^2R-a}{UI}$, где $R$ [Ом] — внутреннее сопротивление, $U$ [В] — напряжение, и $a$ [Вт] — потери холостого хода при напряжении $U$. При какой величине тока $I$ КПД будет наибольшим?
Другие задачи
Ответ:
Решение:
№646
Найти наибольшее значение функции $y=\displaystyle \frac {3}{x+1}-\frac {3}{x+5}$ на отрезке $[-4,-2]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№647
Бревно длиной в $20$ м имеет форму усеченного конуса, диаметры оснований которого равны $2$ м и $1$ м. Требуется вырубить из бревна соосную с ним балку с квадратным поперечным сечением, объем которой был бы наибольшим. Какие размеры будеть иметь такая балка?
Текстовые задачи
Ответ:
Решение:
№648
Измерения, проведенные в различных местах реки, покрытой льдом, показали, что скорость воды для разной глубины $x$ изменяется по закону $V=b\ln x+a+kM\ln(t-x)$. На какой глубине скорость течения наибольшая?
Другие задачи
Ответ:
Решение:
№649
Найти наименьшее значение функции $y=\displaystyle \frac {2(x^2-5x+1)}{x^2+1}$ на отрезке $[0,3]$.
Наибольшее/наименьшее значение функции на отрезке
Ответ:
Решение:
№650
Прямоугольное кирпичное помещение должно иметь полезную площадь 80 м², толщину одной из стен 60 см, а остальных трех стен — по 40 см. Каковы должны быть наружные размеры этого помещения, чтобы общая занимаемая им площадь была наименьшей?
Текстовые задачи
Ответ:
Решение:
№651
Если из круглого бревна диаметром $d$ вырезать балку с прямоугольным сечением, основание которого равно $x$, опереть ее на концах и равномерно нагрузить, то ее стрела прогиба будет равна $\displaystyle f=\frac {k}{x\left(d^2-x^2 \right)^{3/2}}$. Найти значение $x$, при котором балка обладает наибольшей жесткостью.
Другие задачи
Ответ:
Решение: