Разные задачи

Преобразования на комплексной плоскости и другие задачи.

 Версия для печати

1363. Над точкой $z=a+bi$ комплексной плоскости выполняется преобразование, при котором данная точка переходит в точку $z'=z\zeta$, где $\displaystyle \zeta=\frac{2ab}{a^2+b^2}+\frac{a^2-b^2}{a^2+b^2}i$. Вычислить $z'$ и дать геометрическую интерпретацию такого преобразования.
1364. Над точкой $z=a+bi$ комплексной плоскости выполняется преобразование, при котором данная точка переходит в точку $z'=z\zeta$, где $\displaystyle \zeta=\frac{b^2-a^2}{a^2+b^2}+\frac{2ab}{a^2+b^2}i$. Вычислить $z'$ и дать геометрическую интерпретацию такого преобразования.
1365. Над точкой $z=a+bi$ комплексной плоскости выполняется преобразование, при котором данная точка переходит в точку $z'=z\,i$. Вычислить $z'$ и дать геометрическую интерпретацию такого преобразования.
1376. Над каждой точкой $z=a+bi$ комплексной плоскости выполняется преобразование, при котором данная точка переходит в точку $z'=z\zeta$, где $\displaystyle \zeta=\frac{a^2-b^2}{a^2+b^2}-\frac{2ab}{a^2+b^2}i$. Дать геометрическую интерпретацию (словесное описание) этого преобразования.
1377. Над каждой точкой $z=a+bi$ комплексной плоскости выполняется преобразование, при котором данная точка переходит в точку $z'=z\zeta$, где $\displaystyle \zeta=-\frac{2ab}{a^2+b^2}+\frac{b^2-a^2}{a^2+b^2}i$. Дать геометрическую интерпретацию (словесное описание) этого преобразования.
© Моисеев Д. В., 2015-2018 г.
Не допускается использование материалов сайта в печатных изданиях, для получения материальной выгоды, в коммерческих целях без письменного разрешения правообладателя.