Версия для печати

Номер страницы: 1 ...  116 117 118 119 120 121 122 123 124 125 126 127 128 129 130  131  132 133 134 135 136 137 138 139 140 141 142 143
4087. В треугольнике $ABC$ со сторонами $BC=15$, $AC=13$ и $AB=4$ проведены биссектрисы $AM$ и $BK$, пересекающиеся в точке $O$. Найти: а) отношение $AO:OM$, б) отношение $BO:OK$, в) площадь четырёхугольника $OMCK$.
4088. В треугольнике $ABC$ со сторонами $BC=13$, $AC=15$ и $AB=4$ проведены биссектрисы $AM$ и $BK$, пересекающиеся в точке $O$. Найти: а) отношение $AO:OM$, б) отношение $BO:OK$, в) площадь четырёхугольника $OMCK$.
4089. Дан треугольник со сторонами 5, 7 и 8. Найти стороны треугольника, подобного данному, если его периметр равен 60.
4090. Дан треугольник со сторонами 15, 21 и 24. Найти стороны треугольника, подобного данному, если его периметр равен 20.
4091. На стороне $AB$ треугольника $ABC$ взята точка $M$ так, что $AM:MB=2:3$. Через точку $M$ проведена прямая, параллельная стороне $AC$ и пересекающая сторону $BC$ в точке $K$. Найти отношение площадей треугольника $BMK$ и трапеции $AMKC$.
4092. На стороне $AB$ треугольника $ABC$ взята точка $M$ так, что $AM:MB=3:2$. Через точку $M$ проведена прямая, параллельная стороне $AC$ и пересекающая сторону $BC$ в точке $K$. Найти отношение площадей треугольника $BMK$ и трапеции $AMKC$.
4093. На стороне $AB$ треугольника $ABC$ взята точка $M$ так, что $AM:MB=3:1$. Через точку $M$ проведена прямая, параллельная стороне $AC$ и пересекающая сторону $BC$ в точке $K$. Найти отношение площадей треугольника $BMK$ и трапеции $AMKC$.
4094. На стороне $AB$ треугольника $ABC$ взята точка $M$ так, что $AM:MB=4:3$. Через точку $M$ проведена прямая, параллельная стороне $AC$ и пересекающая сторону $BC$ в точке $K$. Найти отношение площадей треугольника $BMK$ и трапеции $AMKC$.
4095. Дан треугольник со сторонами 3, 4 и 5. Найти стороны треугольника, подобного данному, если его площадь равна 96.
4096. Дан прямоугольник со сторонами 4 и 7. Найти стороны прямоугольника, подобного данному, если его площадь равна 700.
4097. Дан треугольник со сторонами 9, 12 и 15 ($9^2+12^2=15^2$). Найти стороны треугольника, подобного данного, если его площадь равна 24.
4098. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-6x-28=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4099. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-10x+2=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4100. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-14x+32=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4101. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-10x+12=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4102. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-6x-10=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4103. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-10x+8=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4104. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-14x+38=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4105. Пусть $x_1$ и $x_2$ — корни уравнения $x^2-6x+2=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2+x_1x_2^2$;
б) $x_1^2+x_2^2$;
в) $x_1^3+x_2^3$.
4106. Один из корней уравнения $25x^2+px+2=0$ в 2 раза больше другого. Найти $p$.
4107. Один из корней уравнения $9x^2+px+8=0$ в 2 раза больше другого. Найти $p$.
4108. Один из корней уравнения $9x^2+px+5=0$ в 5 раз больше другого. Найти $p$.
4109. Один из корней уравнения $4x^2+px+27=0$ в 3 раза больше другого. Найти $p$.
4110. Один из корней уравнения $8x^2+px+9=0$ в 2 раза больше другого. Найти $p$.
4111. Один из корней уравнения $25x^2+px+18=0$ в 2 раза больше другого. Найти $p$.
4112. Один из корней уравнения $3x^2+px+4=0$ в 3 раза больше другого. Найти $p$.
4113. Один из корней уравнения $49x^2+px+27=0$ в 3 раза больше другого. Найти $p$.
4114. Пусть $x_1$ и $x_2$ — корни уравнения $48x^2-72x-5=0$. Не вычисляя корней уравнения, найти:
а) $x_1^2x_2^3+x_1^3x_2^2$;
б) $x_1^3+x_2^3$.
4128. В треугольнике $ABC$ проведена биссектриса $AD$. Через точку $D$ параллельно стороне $AB$ проведена прямая, пересекающая сторону $AC$ в точке $E$. Найти $DE$, если $AB=6$ и $AC=10$.
4129. Прямая, параллельная основанию треугольника, делит его на треугольник и трапеции, площади которых относятся как $2:1$, считая от вершины. В каком отношении эта прямая делит боковую сторону треугольника?
© Моисеев Д. В., 2015-2018 г.
Не допускается использование материалов сайта в печатных изданиях, для получения материальной выгоды, в коммерческих целях без письменного разрешения правообладателя.